tranformation works with any number type

This commit is contained in:
Jon Janzen
2022-01-01 18:11:39 -07:00
parent ae9316bc8e
commit b40d7c5b7b

View File

@@ -1,28 +1,38 @@
use std::f32::consts::PI; use std::f32::consts::PI;
use crate::matrix::Matrix; use crate::matrix::Matrix;
use crate::num_traits_cast;
use crate::structs::Tuple; use crate::structs::Tuple;
use num_traits::NumCast;
impl Matrix { impl Matrix {
pub fn translation(x: f32, y: f32, z: f32) -> Self { pub fn translation<X, Y, Z>(x: X, y: Y, z: Z) -> Self
where X: NumCast,
Y: NumCast,
Z: NumCast, {
Matrix::from_array([ Matrix::from_array([
[1.0, 0.0, 0.0, x ], [1.0, 0.0, 0.0, num_traits_cast!(x)],
[0.0, 1.0, 0.0, y ], [0.0, 1.0, 0.0, num_traits_cast!(y)],
[0.0, 0.0, 1.0, z ], [0.0, 0.0, 1.0, num_traits_cast!(z)],
[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0],
]) ])
} }
pub fn scaling(x: f32, y: f32, z: f32) -> Self { pub fn scaling<X, Y, Z>(x: X, y: Y, z: Z) -> Self
where X: NumCast,
Y: NumCast,
Z: NumCast, {
Matrix::from_array([ Matrix::from_array([
[ x, 0.0, 0.0, 0.0], [num_traits_cast!(x), 0.0, 0.0, 0.0],
[0.0, y, 0.0, 0.0], [0.0, num_traits_cast!(y), 0.0, 0.0],
[0.0, 0.0, z, 0.0], [0.0, 0.0, num_traits_cast!(z), 0.0],
[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0],
]) ])
} }
pub fn rotation_x(r: f32) -> Self { pub fn rotation_x<R: NumCast>(r: R) -> Self {
let r: f32 = num_traits_cast!(r);
Matrix::from_array([ Matrix::from_array([
[1.0 , 0.0, 0.0, 0.0], [1.0 , 0.0, 0.0, 0.0],
[0.0, r.cos(), -1.0 * r.sin(), 0.0], [0.0, r.cos(), -1.0 * r.sin(), 0.0],
@@ -40,7 +50,8 @@ impl Matrix {
]) ])
} }
pub fn rotation_z(r: f32) -> Self { pub fn rotation_z<R: NumCast>(r: R) -> Self {
let r : f32 = num_traits_cast!(r);
Matrix::from_array([ Matrix::from_array([
[r.cos(), -1.0 * r.sin(), 0.0, 0.0], [r.cos(), -1.0 * r.sin(), 0.0, 0.0],
[r.sin(), r.cos(), 0.0, 0.0], [r.sin(), r.cos(), 0.0, 0.0],
@@ -49,11 +60,18 @@ impl Matrix {
]) ])
} }
pub fn shearing(xy: f32, xz: f32, yx: f32, yz: f32, zx: f32, zy: f32) -> Self { pub fn shearing<XY, XZ, YX, YZ, ZX, ZY>(xy: XY, xz: XZ, yx: YX, yz: YZ, zx: ZX, zy: ZY) -> Self
where XY: NumCast,
XZ: NumCast,
YX: NumCast,
YZ: NumCast,
ZX: NumCast,
ZY: NumCast,
{
Matrix::from_array([ Matrix::from_array([
[1.0, xy, xz, 0.0], [1.0, num_traits_cast!(xy), num_traits_cast!(xz), 0.0],
[ yx, 1.0, yz, 0.0], [num_traits_cast!(yx), 1.0, num_traits_cast!(yz), 0.0],
[ zx, zy, 1.0, 0.0], [num_traits_cast!(zx), num_traits_cast!(zy), 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0],
]) ])
} }
@@ -65,11 +83,11 @@ mod tests {
#[test] #[test]
fn multiply_by_a_translations_matrix() { fn multiply_by_a_translations_matrix() {
let transform = Matrix::translation(5.0, -3.0, 2.0); let transform = Matrix::translation(5, -3, 2);
let p = Tuple::point(-3.0, 4.0, 5.0); let p = Tuple::point(-3, 4, 5);
let expected_point = Tuple::point(2.0, 1.0, 7.0); let expected_point = Tuple::point(2, 1, 7);
let translated_point = &p * &transform; let translated_point = &p * &transform;
@@ -78,59 +96,59 @@ mod tests {
#[test] #[test]
fn multiply_by_the_inverse_of_a_translation_matrix() { fn multiply_by_the_inverse_of_a_translation_matrix() {
let transform = Matrix::translation(5.0, -3.0, 2.0); let transform = Matrix::translation(5, -3, 2);
let inv = transform.inverse(); let inv = transform.inverse();
let p = Tuple::point(-3.0, 4.0, 5.0); let p = Tuple::point(-3, 4, 5);
let expected_point = Tuple::point(-8.0, 7.0, 3.0); let expected_point = Tuple::point(-8, 7, 3);
assert_eq!(&inv * &p, expected_point); assert_eq!(&inv * &p, expected_point);
} }
#[test] #[test]
fn translation_does_not_affect_vectors() { fn translation_does_not_affect_vectors() {
let transform = Matrix::translation(5.0, -3.0, 2.0); let transform = Matrix::translation(5, -3, 2);
let v = Tuple::vector(-3.0, 4.0, 5.0); let v = Tuple::vector(-3, 4, 5);
assert_eq!(&transform * &v, v); assert_eq!(&transform * &v, v);
} }
#[test] #[test]
fn scaling_matrix_applied_to_point() { fn scaling_matrix_applied_to_point() {
let transform = Matrix::scaling(2.0, 3.0, 4.0); let transform = Matrix::scaling(2, 3, 4);
let p = Tuple::point(-4.0, 6.0, 8.0); let p = Tuple::point(-4, 6, 8);
let expected = Tuple::point(-8.0, 18.0, 32.0); let expected = Tuple::point(-8, 18, 32);
assert_eq!(&transform * &p, expected); assert_eq!(&transform * &p, expected);
} }
#[test] #[test]
fn scaling_matrix_apled_to_vector() { fn scaling_matrix_apled_to_vector() {
let transform = Matrix::scaling(2.0, 3.0, 4.0); let transform = Matrix::scaling(2, 3, 4);
let v = Tuple::vector(-4.0, 6.0, 8.0); let v = Tuple::vector(-4, 6, 8);
assert_eq!(&transform * &v, Tuple::vector(-8.0, 18.0, 32.0)); assert_eq!(&transform * &v, Tuple::vector(-8, 18, 32));
} }
#[test] #[test]
fn multiplying_inverse_of_scaling_matrix() { fn multiplying_inverse_of_scaling_matrix() {
let transform = Matrix::scaling(2.0, 3.0, 4.0); let transform = Matrix::scaling(2, 3, 4);
let inv = transform.inverse(); let inv = transform.inverse();
let v = Tuple::vector(-4.0, 6.0, 8.0); let v = Tuple::vector(-4, 6, 8);
assert_eq!(&inv * &v, Tuple::vector(-2.0, 2.0, 2.0)); assert_eq!(&inv * &v, Tuple::vector(-2, 2, 2));
} }
#[test] #[test]
fn reflection_is_scaling_by_a_negative_value() { fn reflection_is_scaling_by_a_negative_value() {
let transform = Matrix::scaling(-1.0, 1.0, 1.0); let transform = Matrix::scaling(-1, 1, 1);
let p = Tuple::point(2.0, 3.0, 4.0); let p = Tuple::point(2, 3, 4);
assert_eq!(&transform * &p, Tuple::point(-2.0, 3.0, 4.0)); assert_eq!(&transform * &p, Tuple::point(-2, 3, 4));
} }
fn sqrt_of_2() -> f32 { fn sqrt_of_2() -> f32 {
(2.0 as f32).sqrt() (2 as f32).sqrt()
} }
#[test] #[test]
fn rotating_a_point_around_the_x_axis() { fn rotating_a_point_around_the_x_axis() {
let p = Tuple::point(0.0, 1.0, 0.0); let p = Tuple::point(0, 1, 0);
let half_quarter = Matrix::rotation_x(PI / 4.0); let half_quarter = Matrix::rotation_x(PI / 4.0);
let full_quarter = Matrix::rotation_x(PI / 2.0); let full_quarter = Matrix::rotation_x(PI / 2.0);
@@ -140,7 +158,7 @@ mod tests {
#[test] #[test]
fn inverse_of_an_x_rotation_rotates_opposite_direction() { fn inverse_of_an_x_rotation_rotates_opposite_direction() {
let p = Tuple::point(0.0, 1.0, 0.0); let p = Tuple::point(0, 1, 0);
let half_quarter = Matrix::rotation_x(PI / 4.0); let half_quarter = Matrix::rotation_x(PI / 4.0);
let inv = half_quarter.inverse(); let inv = half_quarter.inverse();
@@ -149,7 +167,7 @@ mod tests {
#[test] #[test]
fn rotating_point_around_y_axis() { fn rotating_point_around_y_axis() {
let p = Tuple::point(0.0, 0.0, 1.0); let p = Tuple::point(0, 0, 1);
let half_quarter = Matrix::rotation_y(PI / 4.0); let half_quarter = Matrix::rotation_y(PI / 4.0);
let full_quarter = Matrix::rotation_y(PI / 2.0); let full_quarter = Matrix::rotation_y(PI / 2.0);
@@ -159,7 +177,7 @@ mod tests {
#[test] #[test]
fn rotating_point_around_z_axis() { fn rotating_point_around_z_axis() {
let p = Tuple::point(0.0, 1.0, 0.0); let p = Tuple::point(0, 1, 0);
let half_quarter = Matrix::rotation_z(PI / 4.0); let half_quarter = Matrix::rotation_z(PI / 4.0);
let full_quarter = Matrix::rotation_z(PI / 2.0); let full_quarter = Matrix::rotation_z(PI / 2.0);
@@ -169,75 +187,75 @@ mod tests {
#[test] #[test]
fn shearing_transform_moves_x_in_proportion_to_y() { fn shearing_transform_moves_x_in_proportion_to_y() {
let transform = Matrix::shearing(1.0, 0.0, 0.0, 0.0, 0.0, 0.0); let transform = Matrix::shearing(1, 0, 0, 0, 0, 0);
let p = Tuple::point(2.0, 3.0, 4.0); let p = Tuple::point(2, 3, 4);
assert_eq!(&transform * &p, Tuple::point(5.0, 3.0, 4.0)); assert_eq!(&transform * &p, Tuple::point(5, 3, 4));
} }
#[test] #[test]
fn shearing_transform_moves_x_in_proportion_to_z() { fn shearing_transform_moves_x_in_proportion_to_z() {
let transform = Matrix::shearing(0.0, 1.0, 0.0, 0.0, 0.0, 0.0); let transform = Matrix::shearing(0, 1, 0, 0, 0, 0);
let p = Tuple::point(2.0, 3.0, 4.0); let p = Tuple::point(2, 3, 4);
assert_eq!(&transform * &p, Tuple::point(6.0, 3.0, 4.0)); assert_eq!(&transform * &p, Tuple::point(6, 3, 4));
} }
#[test] #[test]
fn shearing_transform_moves_y_in_proportion_to_z() { fn shearing_transform_moves_y_in_proportion_to_z() {
let transform = Matrix::shearing(0.0, 0.0, 0.0, 1.0, 0.0, 0.0); let transform = Matrix::shearing(0, 0, 0, 1, 0, 0);
let p = Tuple::point(2.0, 3.0, 4.0); let p = Tuple::point(2, 3, 4);
assert_eq!(&transform * &p, Tuple::point(2.0, 7.0, 4.0)); assert_eq!(&transform * &p, Tuple::point(2, 7, 4));
} }
#[test] #[test]
fn shearing_transform_moves_z_in_proportion_to_x() { fn shearing_transform_moves_z_in_proportion_to_x() {
let transform = Matrix::shearing(0.0, 0.0, 0.0, 0.0, 1.0, 0.0); let transform = Matrix::shearing(0, 0, 0, 0, 1, 0);
let p = Tuple::point(2.0, 3.0, 4.0); let p = Tuple::point(2, 3, 4);
assert_eq!(&transform * &p, Tuple::point(2.0, 3.0, 6.0)); assert_eq!(&transform * &p, Tuple::point(2, 3, 6));
} }
#[test] #[test]
fn shearing_transform_moves_z_in_proportion_to_y() { fn shearing_transform_moves_z_in_proportion_to_y() {
let transform = Matrix::shearing(0.0, 0.0, 0.0, 0.0, 0.0, 1.0); let transform = Matrix::shearing(0, 0, 0, 0, 0, 1);
let p = Tuple::point(2.0, 3.0, 4.0); let p = Tuple::point(2, 3, 4);
assert_eq!(&transform * &p, Tuple::point(2.0, 3.0, 7.0)); assert_eq!(&transform * &p, Tuple::point(2, 3, 7));
} }
#[test] #[test]
fn individual_transformations_are_applied_in_sequence() { fn individual_transformations_are_applied_in_sequence() {
let p = Tuple::point(1.0, 0.0, 1.0); let p = Tuple::point(1, 0, 1);
let a = Matrix::rotation_x(PI / 2.0); let a = Matrix::rotation_x(PI / 2.0);
let b = Matrix::scaling(5.0, 5.0, 5.0); let b = Matrix::scaling(5, 5, 5);
let c = Matrix::translation(10.0, 5.0, 7.0); let c = Matrix::translation(10, 5, 7);
let p2 = &a * &p; let p2 = &a * &p;
assert_eq!(p2, Tuple::point(1.0, -1.0, 0.0)); assert_eq!(p2, Tuple::point(1, -1, 0));
let p3 = &b * &p2; let p3 = &b * &p2;
// assert_eq!(p3, Tuple::point(5.0, -5.0, -0.00)); // assert_eq!(p3, Tuple::point(5, -5, -00));
assert_relative_eq!(p3.x(), 5.0); assert_relative_eq!(p3.x(), 5.0);
assert_relative_eq!(p3.y(), -5.0); assert_relative_eq!(p3.y(), -5.0);
//assert_relative_eq!(p3.z(), 0.0, 1.0); //assert_relative_eq!(p3.z(), 0, 1);
// I don't think the approx crate can handle numbers close to 0 appropriately // I don't think the approx crate can handle numbers close to 0 appropriately
assert_eq!(true, relative_eq!(p3.z(), 0.0, max_relative = 1.0)); assert_eq!(true, relative_eq!(p3.z(), 0.0, max_relative = 1.0));
assert_relative_eq!(p3.w(), 1.0); assert_relative_eq!(p3.w(), 1.0);
let p4 = &c * &p3; let p4 = &c * &p3;
assert_eq!(p4, Tuple::point(15.0, 0.0, 7.0)); assert_eq!(p4, Tuple::point(15, 0, 7));
} }
#[test] #[test]
fn chained_transformations_must_be_applied_in_reverse_order() { fn chained_transformations_must_be_applied_in_reverse_order() {
let p = Tuple::point(1.0, 0.0, 1.0); let p = Tuple::point(1, 0, 1);
let a = Matrix::rotation_x(PI / 2.0); let a = Matrix::rotation_x(PI / 2.0);
let b = Matrix::scaling(5.0, 5.0, 5.0); let b = Matrix::scaling(5, 5, 5);
let c = Matrix::translation(10.0, 5.0, 7.0); let c = Matrix::translation(10, 5, 7);
let t = &(&c * &b) * &a; let t = &(&c * &b) * &a;
assert_eq!(&t * &p, Tuple::point(15.0, 0.0, 7.0)); assert_eq!(&t * &p, Tuple::point(15, 0, 7));
} }
} }